
Journal of Mathematical Chemistry 13(1993)1-14 1 

Entanglements in glass* 

Nicolas Rivier 

Blackett Laboratory, Imperial College, GB London SW7 2BZ, UK 
and Institut de Physique Expdrimentale, Universitd de Lausanne, 

1015 Dorigny-Lausanne, Switzerland 

Ground state and elementary excitations (tunnelling modes) in glass are obtained 
from an analysis of its symmetry, a local gauge invariance. The configuration of glass 
is represented as a discrete fiber bundle. The base space is a continuous random network, 
standard model of the structure of covalent glasses. The connection is determined 
naturally by the elasticity of the network. The bundle is non-trivial, the elastic connection 
is entangled in one of two ways. Sources of non-triviality are closed loops, threading 
through odd rings in the network. To restore gauge invariance, tunnelling must occur 
between the two possible configurations about an odd loop. Entanglement and elementary 
excitations are labelled by permutations of the covalent bonds incident on an atom. 

1. In t roduc t ion  

It is not the structure of  glass which is entangled, but its physical properties. 
This entanglement manifests itself through extraordlnary behaviour  (decoupled 
additional excitations: tunnelling modes [1]), which is a signature (specific and 
universal) o f  disordered condensed matter at low temperature. The mathematical 
mechanism by which a harmless (albeit random) structure induces frustrated 1) [2] 
behaviour in the physical quantities attached to it is called a fiber bundle. Indeed, 
glass can be regarded as the archetype of  a non-trivial fiber bundle in condensed 
matter, where the base space is the structure of  the material itself [3]. Structural 
defects,  the source of  non-triviality of  the bundle, are then directly responsible for 
the extraordinary physics. 

A disordered structure is homogeneous and isotropic, but not in a generative 
fashion: after some displacement, the local environment is different, but this difference 
(fluctuation) is not objective, it just happens here. Glass, as a whole, is a homogeneous, 
space-fiUing collection of  elements (Vierbein) fluctuating in orientation. Automorphisms 
probing this overall homogeneity are not displacements, but local transformations 
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(rotation and reflection of the Vierbein) which leave unchanged the global structural 
and physical properties of the material. These automorphisms are gauge transformations, 
and the overall symmetry of glass is gauge invariance [3]. Now, the natural geometrical 
framework for gauge symmetry is a fiber bundle. (Fiber bundle is defined briefly 
in section 3 as the geometrical structure of a physical system; it is not an abstract 
mathematical construction.) 

2. Architecture and symmetry of glass 

Glass (for example, vitreous silica SiO/(window glass)) is represented by a 
solid random network. Its vertices {V} are the Si atoms. Chemistry (or quantum 
mechanics) requires that they are tetravalent: every vertex has valency or coordinance 
z = 4 and the network is a regular graph. Short-range order is perfect (ignoring 
"dangling bonds") and the regular graph is called a continuous random network. 

Chemical bonds S i - O - S i ,  decorated by oxygen, are the edges {E} of the 
network. Bonds can be bent or stretched, at an energy cost, so that the vertices 
remain perfect tetrapods or Vierbein, while the overall network is random. (Vierbein 
is both singular and plural, with apologies to German grammar.) Randomness sets 
in very rapidly from the perfect short-range order of the Vierbein; indeed, there is 
no long-range order from 4 nm (about 10 interatomic Si -Si  distances) out. This 
distance turns out to be also the screening length for elastic stresses in the glass. 

In spite of being based on a discrete network, glass is therefore extremely 
disordered and homogeneous: " . . .  One of the most interesting discoveries made 
in the comparatively early history of X-ray analysis was the fact that silk or even 
paper are more crystalline than glass." (Kathleen Lonsdale). This homogeneity (a 
non-generative symmetry in a random medium: lost in a forest, you may walk from 
tree to tree and face a different species, but this information does not help you to 
find your way out) is a gauge invariance [3]. The local reference frame (Vierbein 
in glass) has arbitrariness, which is expressed as a gauge invariance (invariance of 
the physical properties of the glass with respect to a local or gauge transformation). 

Faces of the network are (shortest) rings, usually puckered, but not entangled. 
We shall see that these planar rings are sources of physical entanglement, which 
is measurable. Cells have no direct geometrical interpretation. 

Glass is a form of condensed matter. It has a spacial structure and is in a fixed 
configuration. This implies that the local reference frame (Vierbein) must be returned 
to the same orientation or to an equivalent one after circumnavigation. Circumnavigation 
is determined by parallel transport, but here on a discrete network (physically imposed 
connection on a discrete fiber bundle [4]). This restriction is a geometrical quantization, 
also seen in dislocation in crystals where the quantized equivalent configurations are 
labelled by the (space) group of symmetry of the crystalline structure. In glass, as 
in any disordered structure, the space group is trivial (it consists of the identity 
operation only), but we shall see that there are non-trivial configurations in which 
the transported Vierbein is entangled, and these non-trivial configurations make up 
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the ground state of the material. (By contrast, the "geometric (Berry) phase " is not 
quantized because the system is not part of a condensed structure. For example, the 
rotation angle of a Foucault pendulum is a continuous function of the latitude.) 

Entanglements in glass are physical and measurable. They are caused by the 
presence of non-trivial rings. The ring itself is planar, but circumnavigation of the 
Vierbein around it is not fiat. Non-trivial rings (rings with an odd number of bonds) 
are sources of non-triviality of the fiber bundle representing the (gauge-invariant) 
glass: the base space is the network itself, and the connection is imposed by physics. 

Section 3 presents glass as a fiber bundle. It is not essential in order to 
understand the rest of the paper. The main points are [3]: 

(i) Gauge invariance is the symmetry of disorder, and the natural geometric 
framework of gauge theories is a fiber bundle. 

(ii) In condensed matter, the base space of the bundle is the geometrical 
network of atoms and bonds. In glass, this network is a regular, random graph 
(continuous random network). 

(iii) The sources of non-triviality (loci of frustration) of the bundle are odd 
rings. Odd rings do not occur in isolation, but are threaded through by uninterrupted 
lines which form closed loops or terminate at the surface of the material [5]. Thus, 
glass is constituted of necklaces of odd rings, similar to vortices or dislocations, but 
characterized by existence (oddness) instead of intensity. (This result is a geometric 
conservation law (Poincar6's identity) expressing the fact that a boundary (0) has 
no boundary (0O- 0). An odd ring is a boundary (since a ring with zero (even) 
bonds is manifestly bounding, and the number of bonds is not a conserved quantity 
in the absence of generative rotation symmetry - it is changed by a disclination). 
Proof of this conservation law is elementary [5, 3].) 

3. Glass as a fiber bundle 

Gauge invariance is the symmetry of disorder. Glass is a disordered solid and 
can be represented as a fiber bundle because a gauge field, geometrically, is a 
connection in a fiber bundle. A fiber bundle consists of a base space (the regular 
graph of Si atoms and bonds), a total space (position and relative orientation of the 
Vierbein), and a map that projects every point of the total space onto a point in the 
base space. The set of all points in the total space that are mapped onto the same 
point in the base is called the fiber. 

(In most condensed matter applications, the base space is the ordinary space 
occupied by the material, and the fiber represents "the parameter to be gauged". In 
glass, the fiber consists of the set of permutations of the legs of a Vierbein. It wiU 
be defined naturally below.) 

The connection or gaugefield describes how the orientation of the Vierbein 
changes as one goes along a path in base space, or how the path in base space is 
lifted into a path of the fiber bundle. In glass, this connection is a natural (physical) 
one: it is carried by the (bond-bending) energy between two Vierbein separated by 
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a bond. (See Bernstein and Phillips [6] for other examples, and for reassurances as 
to the naturalness of the connection process.) 

When the base space is continuous, the connection is usually carried through 
parallel transport, a prescription that the orientation of the fiber (or of any transported 
object) remains constant along a geodesic in base space. This is the basis of a 
macroscopic description of glass as an elastic continuum (disordered) [7]. 

A trivial fiber bundle is one for which the total space is the direct product 
of the base space by the fiber. Conversely, a bundle is not trivial if it ends up 
twisted or entangled: the position on the fiber is modified as one moves along a 
close contour (ring) in base space. The fiber at the end of the circumnavigation is 
indistinguishable from that at the beginning (because there is only one, unique 
representative fiber, but also, physically, because we are in a solid with a given, 
frozen configuration). Yet, the successive connections end up entangled. Such a 
twist or entanglement is called a large gauge transformation. It is topologically 
stable and cannot be undone by infinitesimal corrections along the contour. Glass 
is entangled around odd rings, as we shall see. 

The curvature of the region in the base surrounded by a closed path is given 
by the distance along any one of the fibers made by the lifted path. In glasses, fiber 
bundles on discrete networks, the natural path lifting operation generalizes the 
notion of curvature without requiring parallel transport. Thus, an even ring is fiat 
and an odd ring is curved [5]. 

Glasses have non-generative symmetry, probed by automorphisms which act 
as translations along the fiber. The problem is to separate the degree of freedom 
into those labelling the base and those labelling the fiber, and to define the projection. 
Bundles describing topologically disordered materials are highly non-trivial (there 
is a lot of frustration in glasses (a large density of odd lines)), so that the separation 
between "intemal" (fiber) and base parameters is not obvious, and this non-triviality 
leads to remarkable physical properties, which we now encounter. 

4. Physical properties of glass, demonstrating entanglement 

Glasses have anomalous physical properties - specific heat, phonon transport, 
saturability and echoes (coherence) - below 1 K [1], which can be modelled by 
tunnelling modes between pairs of potential valleys in configuration space, represented 
schematically (but accurately as far as the energy scale and the physical properties 
are concemed) in fig. 1. The specific heat is approximately linear in temperature 
below 1 K, where a linear function exceeds the T 3 contribution of phonons in a 
three-dimensional system. There are therefore additional elementary excitations in 
glass besides phonons. A distribution of two-level systems of fig. 1 yields a linear 
specific heat (as for electrons in metals: Boltzmann's distribution on a two-level 
system is Fermi,Dirac 's ,  and the distribution P(Ao) of energy spacings plays the part 
of the density of electronic states). Heat is carried by phonons. Glass has a lower 
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Fig. 1. Potential valleys in configuration space, giving rise to tunnelling 
modes. The configuration space is a direct product of one-dimensional subspaces, 
each associated with one odd line. Topology of the valleys is sufficient to 
obtain (qualitatively) ground state and elementary excitations in glass [3]. 

thermal conductivity than its corresponding crystalline material (e.g. quartz), so the 
phonons are absorbed by the additional excitations, as they should be in the model 
of fig. 1. If the power of the transducer is increased, most two-level systems will 
have absorbed a phonon and be in their excited state. They can no longer absorb 
phonons, and the thermal conductivity of the crystal is recovered. Finally, an echo 
can be set up on these excitations, as in any quantum two-level system (spin 1/2). 
The echo delay time is approximately 10 Its at 20 inK, which shows that the two- 
level systems are effectively decoupled (the dephasing time T2 is greater than this 
very long delay time). Saturation and echo also indicate that the two-level excitations 
are due to quantum tunnelling (classical, thermal excitations are at much higher 
energy, out of reach at these low temperatures). In fig. 1, the energy splitting A0 
of the two levels is due entirely to tunnelling between degenerate potential wells. 
Any departure from degeneracy A yields an additional energy difference (>A if 
A > Ao). 

Apart from the fact that one does not know precisely what tunnels, the 
presence of nearly degenerate (to within less than 10 -4 eV) classical ground states 
(potential minima) in a system with no obvious symmetry to impose the degeneracy 
is astonishing: bulk condensed matter usually has one single ground state, and its 
potential energy, one single minimum in a many-dimensional configuration space. 
Excitations about this minimum are phonons, which can also be heard in glass. (By 
contrast, multiply-connected condensed matter can accommodate several, nearly 
degenerate, low-energy configurations. For example, the energy of a superconducting 
ring trapping n magnetic flux quanta depends only on n through the contribution 
of the magnetic field energy outside the ring. The energy inside the material is 
identical for all n.) 
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Observation of echo (analogous to spin echo, but generated by sound pulses) 
suggests that different tunnelling modes - different pairs of potential valleys 
in fig. 1 - are uncoupled enough to preserve phase coherence between excitation 
and echo (=10 ItS at 20 mK). What are these tunnelling modes, why are they 
decoupled, and why are they degenerate in a strongly correlated system of many 
atoms with trivial space group? 

The answers can be found in the elasticity of continuous random networks. 
The normal modes are phonons and the additional excitations of fig. 1. The lowest 
elastic energy spectrum of continuous random networks about odd lines is that of 
fig. 1 [8]. Even rings have standard spectrum, with one single potential minimum. 
By contrast, each odd line has (in a z = 4 network) two alternative ground-state 
configurations, degenerate in energy. The degeneracy is due to gauge invariance. 

5. Elasticity of random networks 

Consider a solid, continuous random network, made of perfect Vierbein {V} 
and stretchable and bendable bonds {E}. The elastic energy (eq. (1) below) is 
carried by the bonds connecting two Vierbein. It establishes the connection, as 
described below. 

There are two types of potential energies, bond-stretching and bond-bending. 
Bond-stretching is very much the stronger of the two, but neglecting bond-bending 
altogether leaves the network underconstrained (wobbly), with as many zero frequency 
modes as there are atoms if the network is tetracoordinated. These zero frequency 
modes are degenerate ground states. Let us see how and whether this degeneracy 
is lifted by bond-bending forces. 

5.1. BOND-STRETCHING ONLY 

The elastic potential energy of N atoms in a network consists of two terms 
[9, 8]: a strong, bond-stretching V1 and a weaker, bond-bending contribution 1:2. V1 
can be written in terms of the relative displacement of two neighbouring atoms 
only. V2 requires the direction towards a third atom as well. It is still a two-body 
potential, but the "bodies" are tetrapods, 

v = + v2 = - ui:]  z 
ict 

+ ( W z / 4  ) ~ [ ( r / -  ria ) • ui# + (r  i - ri3 ) • uia] 2. 
i(o~p) 

(1) 

Here, ri is the displacement of atom i, ria that of its neighbour along direction a, 
and uic~ is the direction of bond i a  before displacement (tx = 1 . . . . .  4). i (ot f l)  labels 
two bonds itx and i f l  incident on the same vertex i. 
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Neglecting V2 in a first stage, we find ([9]; [8] has the simplest derivation 
(following Mosseri)) normal modes split into three groups, a band of N phonons, 
flanked (for tetravalent networks) by two sets of N degenerate modes each (fig. 2). 
Since we are only interested in the ground-state configuration(s) and in the lowest 
energy excitations of the material, we concentrate on the N floppy modes at o9 = 0. 

N N 

-- f_9 2 

0 16W1/3m 

Fig. 2. Schematic spectrum of the normal, bond- 
stretching modes of a z = 4 covalent network repre- 
senting a-Si [9,3]. The N floppy (o9 = 0) modes are 
clearly distinguished from the band of (N) phonons. 

Accounting for these N floppy modes is the same as for independent 
currents in an electrical network [10]: they lie on edges not on a spanning 
tree of  the network, and each independent edge closes an independent circuit or 
ring. Bond i a  remains unstretched if qla=ri  • uia=rla • uia. Hence, an 09=0 
mode is characterized by a scalar edge (bond) variable qia, as is a current through 
a link of  an electrical network. Moreover, equilibrium requires ~ctUict= O, thus 
~,aqia=O, which is Kirchhoff's current law. There is also a ring closure 
relation analogous to Kirchhoff's voltage law, but it is unnecessary to count 
independent modes [10,8]. With E = (z/2)N edge variables qia and N current law 
constraints, the number of o9 = 0 modes is N for z = 4. (There are R1 = E -  N + 1 
independent circuits, where R1 is the cyclomatic, or first Betti number, a topological 
invariant of  the graph. The additional mode is the o9 = 0 of  the phonon band (rigid 

translation).) 
Note that simplistic mode counting-  3N elastic modes, with E = 2N constraints, 

o9 = 0 on edges - gives accidentally the correct number. It is correct only if the 
constraints are independent, which they are not. In any case, Kirchhoff does construct 
the independent modes, besides counting them. Note also that the choice of  spanning 

tree is arbitrary. 
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5.2. INCLUDING BOND-BENDING FORCES. CONNECTION 

The problem is to find which independent rings (listed by Kirchhoff's spanning 
tree construction) are trivial (have a unique ground state) and which are not (retain 
several stable configurations) when bond-bending forces are present. Note that an 
odd loop in the network (line threading odd rings) can be represented by an "air 
tube", a torus subgraph with cross sections made up of the odd rings threaded 
through by the odd line and with even rings on its surface. A torus can be laid flat 
on a plane by making two cuts, one longitudinal, the other transverse, and imposing 
periodic boundary conditions. The spanning tree can be chosen on the subgraph so 
that none of its edges crosses these two cuts. All the rings on the plane are even 
except those broken by the longitudinal cut, which are odd by the definition of an 
odd line. (The transverse cut may be traversed by odd rings if the odd loop is itself 
threaded through by an other odd loop, but these odd rings are characteristic of  the 
second loop.) There is only one independent, representative odd ring, which is 
closed by the bond carrying the independent current. 

Let us now include the bond-bending energy V2, and see how the N + 1 floppy 
modes tighten. Specifically, how many of these floppy modes survive as ground 
states? In order to answer this question, we must describe a configuration and 
measure its energy. By definition, floppy modes have only bond-bending energy. 
For a given bond, this energy is measured by comparing the orientations of  the two 
tetrapods which it links or, equivalently, through a congruent transformation of  the 
tetrapod from its orientation at i to that at ia. This is a generalization of  the bond 
energy SiJiiSj in Ising magnetism, which is given either by comparing the directions 
of Si and Sj, or through the congruent transformation (flip or identity) J imposes 
on the spin; here, the congruent transformation is a rotatory reflection, because 
bond a is common to the two tetrapods and imposes a mirror reflection. (The 
rotation part of  the transformation is not essential to our argument. It will only 
affect the spectrum quantitatively.) Recall that we concentrate on floppy modes, 
described by scalar "currents" qic~ on edges (ia) or, more simply, by the congruent 
transformation or connection. Kirchhoff's formalism remains applicable. The voltage 
law is imposed by covering transformation of  the tetrapod around a circuit. The 
current law is automatic because the network is connected at labelled Vierbein. 
(Phonons are distinct modes (the band in fig. 2). Their interaction with tunnelling 
modes, referred to as phonon localization or as phonon-fraction crossover, is not 
addressed in this paper.) 

Configuration of an n-sided ring is the product of  n rotatory reflections. In 
a given configuration, the tetrapod must be returned to its original orientation (or 
an equivalent one) after being carried around the ring. The product of  rotatory 
reflections is therefore a covering transformation of  the tetrapod, namely a permutation 
of  its legs or of  the bond labels. If the ring is even, the permutation, a product of  
n reflections, is even. If the ring is odd, the permutation is odd. A ring configuration 
is therefore a path in the discrete fiber bundle returning to the same fiber (it is 
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closed in base space), but not necessarily to the same point on the fiber. The 
permutation is a gauge transformation moving along the fiber. 

It is not the permutation itself which labels the configuration, but only its 
class: Suppose we were to go around two different tings in succession, recording 
permutation R through one of  them, permutation Q through the other. The total 
permutation is P = Q .  R or P '  = R .  Q, depending on the order of the circumnavigations 
and, in general, P and P '  are different. They are related by 

P ' =  R-  P .  R -1 (2) 

and belong to the same class of  the permutation group. The physical configuration, 
which must be independent of  the order of  circumnavigations made to measure it, 
is labelled by the set which includes P, P' ,  etc., namely by the class of  the permutation 
group to which they belong. The physical fiber bundle identifies in the fiber permutations 
belonging to the same class (fig. 3). 

$ 

large GT 

Fig. 3. The fiber bundle for the ground states of an elastic random network with 
z = 4. Here, the total space represents schematically the class of the covering 
transformation (permutation) of the tetrapod carried around a ring (in base space). 
The fiber consists of two points. ( ..... ) = odd line, × = odd ring, B = base space. 
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The ground state of even rings clearly belongs to the identity class of the 
permutation group of degree z = 4, $4. It is non-degenerate, and even rings are 
dynamically trivial. Identity permutation implies consistent labelling of bonds in the 
ring. The configurations of odd rings are labelled by the two classes of odd permutations 
of $4, each containing six elements 

(aft) ~ and Iiiiiiiii I I I, 

so that odd rings have two distinct lowest-energy configurations (one particular 
permutation in each class, selected by labelling (edge-colouring) the network and 
by choosing a spanning tree), separated by a large gauge transformation. On the 
torus representative of an odd loop, it is easy to label consistently (colour, identity 
permutation) all even rings and impossible to do so for odd rings. Change of 
labelling does not violate consistency. Since one odd ring is the sole, independent 
representative of a whole odd line, we have proven that the odd line has two distinct 
ground states, separated by a large gauge transformation. 

Moreover, two different odd loops are independent since the bonds closing 
their representative odd rings are independent. The remaining rings are even, and 
can all be coloured consistently, i.e labelled by the identity permutation. Gauge 
transformation (a permutation) on one loop does not affect the class of permutation 
representing the structure of another (see eq. (2)). (The fiber bundle satisfies the 
"disjoint union" axiom in topological field theory. Labels for two disjoint boundaries 
of the manifold (odd lines) are independent.) However, the reader may check that 
the class of permutation is the same for all rings threaded through by the same odd 
line, provided that the even rings connecting them are in their ground state. (This 
is illustrated schematically in fig. 3.) 

5.3. LARGE GAUGE TRANSFORMATION AND TUNNELLING 

The algorithm chosen to compute the class of the covering transformation is 
physically arbitrary. It certainly depends on the choice and the labelling of the 
spanning tree. (A different spanning tree may have different "natural" labelling of 
the bonds.) Even with the same spanning tree, it is easy to imagine another choice 
labelling (aft) a ring formerly labelled (afl~,5). A change of algorithm, and of class, 
is therefore a large gauge transformation, leaving invariant the physical properties 
of the system, notably its energy (neglecting, as we have done, the real energy cost 
in bond-bending - we have only investigated the geometrical consequences of 
bond-bending energy, the reflection part of the rotatory reflection connection). (The 
spanning tree is only a means of labelling the network. A similar situation occurs 
with simplicial decomposition of manifolds [11,12]. Defects (loci of non-triviality 
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of the fiber bundle in the base space) and physical properties are independent of 
the triangulation.) 

Thus, neither classical ground-state configuration 

or I I I I  

are gauge-invariant. Each is transformed into the other by a large gauge transformation 
G, 

G IIIII , G IIIII)= 
However, the physical configurations must be gauge-invariant, 

I-F ) = (1/~2) +- Il l l l /] ,  (3) 

with one sign for the ground state and the other for the first excited state. Tunnelling, 
however slow, must take place to restore gauge invariance. This fully confirms 
fig. 1, which can also be obtained from different representations of glass, as a 
disordered elastic continuum [7, 3], or as the result of a random sequence of decurving 
operations [11]. These quantum mechanical tunnelling modes between the two 
classical sectors of  fig. 1, split by h/2n times the tunnelling rate, have been 
observed in SQUIDS and in glasses. Their full identity has been revealed by 
a combination of four different types of  experiments: specific heat, thermal 
conduction or sound propagation, saturation or (nonlinear) ultrasonic attenuation 
and echoes [1]. 

Note that the geometry of the base space (rings are either even or odd, odd 
rings form loops) does not match exactly the dynamics - geometry of  the full 
bundle or homotopy (in which even rings have trivial ground states, whereas odd 
rings can be in either one of  two states of twistedness or vorticity). Non-trivial 
geometry (frustration, odd line, in the base space) is only the source of non-trivial 
dynamics, which also depends on the nature of the dynamical variables (tetrapods) 
through the connection, i.e. on the full bundle. 

For a random network with z = 3 which serves as a model for a-As, the odd 
permutations of  $3 belong to one class only: there can be no microscopic tunnelling 
modes in a-As, which is an assembly of sheets, loosely bound together, rather than 
a three-dimensional solid. (Moreover, rotation about a shared bond is an odd 
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permutation for z = 3, so that the congruent transformation through the bond may 
have determinant 1. It always has determinant - 1  for even z only.) 

A z = 4 network (random froth) can also be the scaffolding for a model of 
disordered condensed matter in three dimensions at a meso- or macroscopic level, 
since vertex coordination of  at least 4 is needed to span three-dimensional space, 
and no more than four cells are incident on one vertex if the structure is random. 
The above results which depend on z = 4 are therefore general for 3D glasses (as 
are tunnelling modes), even if the constituting atoms are not 4-valent. 

Consider now even rings and the group Az of even permutations. The identity 
forms a class (and a subgraph) by itself, and describes the ground state of the network 
restricted to even rings. It also guarantees consistent labelling of the bonds. It is clear 
that excitations are described by a subgroup of permutations. See, for example, the 
argument leading to eq. (2). The group structure describes how the state of one ring is 
affected by excitation of another. For permutation groups, a permutation and its inverse 
belong to the same class (since a class is uniquely given by cyclic decomposition of the 
permutation (Young tableau) and an inverse permutation has its cycles reversed). Invariant 
subgroups are therefore important to restrict the set of excitations. The identity is an 
invariant subgroup, restricting even rings in glass to their groud state. Az itself includes 
all possible excitations. For z > 5, there is no further restriction (since all Aza5 are simple 
(Galois, Abel)). Only z = 4 has an invariant subgroup of order 4, 

which may constitute an interesting subset of excitations in window glass or amorphous 
silicon. 

We have seen an example of  a discrete fiber bundle which is non-trivial 
because of topological disorder (frustration or odd lines). Discreteness is a physical 
attribute of the material, not only a useful mathematical artifice. Discrete fiber bundles 
(with discrete gauge groups as fiber) have been introduced only recently in field 
theory [4], but also as a guide [13] in decurving the ideal state of glass, polytope 
{3, 3, 5} [11, 14]. (Since {3, 3, 5} is a discrete scaffolding for the 3-sphere S 3, which 
is itself the total space of the (non-trivial: $3~  $2× S 1) Hopf bundle with gauge 
group S 1, one can illustrate concepts in the continuum in a small (120 points) discrete 
total space, and vice versa. For example, the fibers are geodesics (circles) which wind 
around each other with winding number 1, indicating the non-triviality of the bundle.) 

6. Final remarks and conclusions 

Glass can be represented as a non-trivial fiber bundle, which is the mathematical 
support of  a gauge theory. The base space is the structural scaffolding, a random 
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network, on which are put the physical quantities; it is the ordinary space. It 
contains the minimal, simplest conceivable line "defects", the odd loops, which are 
the geometric loci of non-triviality of the bundle. Disorder manifests itself in the 
base space at two levels: the distribution of odd lines is random and, it is argued, 
semi-dilute. Moreover, any generative symmetry has disappeared. The space group 
is trivial, and even the involution associated with the bonds (reflection) never adds 
up to a uniform action. It is indeed the action of this involution which differentiates 
odd and even rings. 

It is in the fiber that the physical characteristics of the material are to be 
found, and one would have expected solid state physicists to take charge and flood 
the subject with words, acronyms and particular cases. Not at all. Large gauge 
transformation (topological curvature), the discrete shift along the fiber which is the 
physical manifestation of non-triviality of the bundle, is, like its source in base 
space, universal. It is an involution. It has spectacular (and direct: fig. 1) physical 
consequences in the low temperature behaviour of glass. 

Odd loops, sources of non-triviality of the bundle and of tunnelling modes, 
have been observed indirectly by etch-pits [15] and, probably, directly in electron 
microscopy by Shang and co-workers [16]. 

From the near-perfect homogeneity of glass, emphasized in Lonsdale's quotation 
(section 2), we can infer the density of odd loops: they are "semi-diluted". This 
expression (borrowed from polymer solutions) means that there is only one coherence 
length in the assembly, the average distance between non-adjacent loop elements, 
which is the same whether they belong to the same or to different loops. (Both 
dilute (alphabet soup) and dense (bundles of loops) solutions show features with 
two distinct correlation lengths, which would give an observable signature in X-ray 
or neutron analysis, not seen up to now.) The unique coherence length in window 
glass is of the order of 4 nm; it separates short-range order and long-range homogeneity. 

Large gauge transformations, spanning trees, and line defects are perhaps 
more familiar in continuous materials like superconductors. The phase of the complex 
superconducting order parameter plays the part of the current in an electrical network. 
It is defined everywhere in the superconductor, except at the core of vortices, and 
changes by 2re upon encircling a vortex (fixed, compatible configuration of the 
order parameter in the material). The phase is therefore uniquely defined everywhere, 
arcwise from a given origin, through the analogue in the continuum of the spanning 
tree of electrical network theory. A different selection of arcs around vortices 
(change of spanning tree) is a large gauge transformation, which modifies the phase 
at a point by a multiple of 2~. 
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